
Practically engageable adversaries
for streaming media

Brian Sniffen

bsniffen@akamai.com

Akamai Technologies

Abstract. Streaming media content providers face a variety of adver-
saries. At the large scale at which they operate, they can justify defense
in breadth: different techniques against different adversaries. Existing
analysis techniques awkwardly handle questions about a distribution
of adversaries against an evolving series of protocols. Contemporary
streaming-media protocols eschew full-stream DRM in favor of token-
based authentication at the start of each connection. Very recent protocols
from several vendors package content in chunks of a few seconds each,
rather than a stream continuing for an entire film or live event. Practical
attackers work by copy and paste of these authentication tokens, sharing
URLs to pay-per-view content in chat rooms or web forums. Others use
“deep links” to chunks or lists of chunks to view freely available media
in ways that violate the wishes of the providers. Accidental behaviors of
so-called transparent proxies similarly violate the goals of the providers.
We formalize these attacker descriptions in terms of an adversary who
can only comprehend some tags in a tagged-concatenation Strand Spaces
model. We use this model to show how current streaming protections
work and fail, and suggest directions for new streaming media protocols.

1 Introduction

Millions of people use the Internet to engage with streaming media. One large
provider, YouTube, reports billions of videos viewed per month [1]. Others (Hulu,
NetFlix, Apple, Microsoft, etc.) operate at similar scale. These streaming media
content providers have an unusual set of security goals. They are often happy
to distribute content to anyone—or to a broad base of subscribers—but care
that the content is not copied or presented outside its original context. Facing
several distinct sorts of adversary, the content providers may make justified use
of defense in breadth. They can specialize different defenses against different
adversaries. Against some adversaries they may want technical protection using
cryptographic protocols. Against other adversaries they may prefer social or legal
protections. We propose tag-limits as a way to model the differences between
these adversaries.

New developments in mobile computing and dynamic congestion response
have led the dominant streaming media protocol developers to new designs. These
“manifest-based” protocols complicate the problem of authentication and trust

To appear in FAST2009, pp. 1–9, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 Brian Sniffen

in a distributed environment. They also provide a fine example to show how
changes in protocol design can have different effects on adversaries with different
tag limits.

Typical attacks against these streaming protocols do not exploit cryptographic
flaws. They instead exploit information-flow weaknesses in the protocols: copy
this authentication token into that URL and you can watch movies for free!
This sort of problem is well-modeled by the Dolev-Yao adversary [2]. We model
our protocols in the style of Thayer, Herzog, and Guttman’s Strand Spaces [3]
with rely-guarantee annotations for trust management [4]. This adversary may
freely manipulate cryptographic encapsulations and may compose and decompose
perfect concatenations of terms. The adversary is limited in that his concatenation
operator is perfect—no bitstring can ever be subject to arbitrary parsing [5]. We
further restrict our adversary: we distinguish concatenations by tags, then permit
him only to compose or decompose certain tags. Tags should not be assumed to
affect the wire format. Since any bitstring can be perfectly recognized as having
a single parse, we feel free to assume perfect extraction of tags.

We will review the use of cryptographic protocols for streaming in Section 2,
explaining the new manifest-based protocols in Section 2.3. We will show a
sampling of security goals attributable to the major streaming protocol vendors
in Section 3, then present models of the protocols in Section 4 and reasonable
adversaries in Section 5. We will conclude by sketching advice for new stream-
ing protocols in Section 6. Our principal contributions are the models of the
adversaries and security goals in Sections 5 and 3, and descriptions of modern
streaming protocols in Section 4.

2 Streaming basics

Traditional network streaming has worked with bespoke protocols over unreliable
transit. A stream from a camera is translated to an efficient compressed format
(e.g., MPEG4, Ogg Theora, H.264) at an encoder. A server is then given access
to the encoded stream. For “video-on-demand” (VOD) streams, such as movies
filmed in the past, the server will have a file on disk. For “live” streams showing
real-time or near-real-time data, the server may itself receive the stream over
the network. Clients connect to the server on some well-known control port and
present a request for a stream to be sent to their own IP address. The server
begins sending a sequence of unreliable datagrams to that address. The client
receives most of them, decodes them, and presents a stream to the user.

Early clients were written as stand-alone programs (e.g., Real Media Player,
Windows Media Player, QuickTime Player). Those quickly converted to browser
plug-ins, each responsible for drawing a UI into a frame made available by the
browser. Asynchronous updates to browsers, plug-ins, servers, and web pages
made reliability a problem. Content providers had to rely on streaming protocol
vendors not only for the protocol but for the art and polish of the user interface.
Modern clients consist of three pieces:

Practically engageable adversaries for streaming media 3

Interpreter A browser plug-in that interprets some player. The Adobe Flash
plugin, Silverlight Dynamic Language Runtime, and Objective-C runtime are
interpreters.

Decoder Fast native code or accelerated hardware typically performs the actual
H.264, MPEG, or Ogg Theora decoding.

Player An interpreted blob provides the UI and coördinates the connection
between network, interpreter, decoder, and user. Adobe’s SWF files are
players in this sense, as are Microsoft’s .NET-compiled objects.

Proprietary vendors typically have their own shuffling of these words. Some
call the browser plug-in a player. Some call the decoder a player.

2.1 Classical streaming protocols

Even in the era of interpreted players, streaming media providers have mostly
used bespoke protocols. The evolving bespoke protocols have continued to draw
on public standard protocols. For example, several vendors have drawn on the
successful Transaction Layer Security protocol (TLS) for inspiration for their own
secret or authenticated session protocols. Few have preserved all the properties
of TLS in so doing—but analysis of these protocols may be most revealing in a
cryptographic context. We will not further discuss these protocols here.

More recent systems have used HTTP, the same protocol used for ordinary
web data [6], to transfer the encoded stream.

2.2 URL and Cookie tokens

The principal authentication test used for access to these streams is a token.
Tokens are typically keyed MACs computed over some easily-visible data. For
our purposes, we can model these as encryptions to a key shared by all servers
but no clients. For example, tokens might consist of encryptions over the date,
the name of the stream requested, the IP of the client, or the entire rest of the
request:

{| 123.45.67.89, 26 Jul 2009,
http://www.example.com/...|}K

For many reasons, IP addresses are often not included in the token: mobile
devices often change address mid-stream and expect to be able to resume download
at the same URL, many clients may share an address behind a NAT or proxy,
and some clients may make each request in a sequence from a different address
(as with multi-homed networks). In practice, therefore, a token typically does
not include the client IP address:

4 Brian Sniffen

{| 26 Jul 2009 20:00,
http://www.example.com/stream.mp4?
date=200907262000 & timeout=5|}K

One server can hand out such tokens, and another check that the token is
properly assembled—in this example, that the enclosed date (26 Jul 2009 20:00)
matches the date clearly in the URL (200907262000), that the current time is
within 5 minutes (the “timeout” parameter) of the date shown, and that the
stream URL requested exactly matches that shown in the token.

These tokens may be provided as part of the URL (e.g., appending token=...
to the query string of the URL) or as a cookie set in the browser and sent as a
separate header. As we will see later, these choices enable or combat different
adversaries.

2.3 Manifests

HTTP is well suited for downloads of small (or at least finite) objects. So-called
“progressive-download” extensions to HTTP can help with large and unending
files—but typical solutions end up using query parameters to express offsets into
a file, then leaving an HTTP connection open for a very long time. Because
they use TCP, it is awkward to switch bit-rates or offsets within a stream—as
when changing networks or when a user skips to a different part of a movie. One
solution is to close the stream and request a new stream, accepting the cost to
smooth user experience.

Another solution puts control in the client’s court and fits better with design
of HTTP: break a stream into many small components, providing the client
with a manifest of these components [7]. Live streams may then use progressive
download, refresh/pull, or other mechanisms to keep the client’s view of the
manifest fresh.

Authentication tokens may be embedded into the request for a manifest or
into the URLs inside the manifest. Cookie tokens may be set, cleared, or updated
with each request. The first few lines of a manifest without any tokens embedded
is shown in Fig. 1. Each line represents a link to a few seconds of content.

3 Content provider security goals

The principal actors choosing and deploying streaming media protocols are
content providers. These are typically not copyright holders for the media they
serve; nor do they typically operate servers which directly service users. Rather,
they operate sites like Hulu, YouTube, or NetFlix. These content providers serve
as a nexus to license rights from rights-holders, purchase storage and content
delivery services, and provide a central brand identity for users.

These content providers’ goals are distinct from those of the rights-holders,
though they must also satisfy the rights-holders security policies to remain in
business.

Practically engageable adversaries for streaming media 5

#EXTM3U

#EXT-X-TARGETDURATION:10

#EXT-X-MEDIA-SEQUENCE:176707

#EXTINF:10,

http://example.com/example/fileSequence176707.ts

#EXTINF:10,

http://example.com/example/fileSequence176708.ts

#EXTINF:10,

http://example.com/example/fileSequence176709.ts

#EXTINF:10,

http://example.com/example/fileSequence176710.ts

Fig. 1. Example manifest

3.1 Copying and DRM

For purposes of this analysis, we will assume that any general purpose computer
displaying a video or playing an audio stream may save a copy, and may later
distribute that copy. We will not further address issues of copying or restrictions
on copying, including rights-management software, save to note that high-quality
media files are quite large, and have grown with the growing availability of big
disks and wide pipes. We can treat those adversaries with the resources to copy
and re-distribute media very differently from the adversaries below.

3.2 Deep linking

The principal security goal we consider is the control of access to and presentation
of the content. Our content providers are specifically concerned with preventing
various forms of “deep linking1.”

Content providers often hand out URLs to streams for free, but only after a
short ceremony (e.g., watching an advertisement or registering an e-mail address).
They do not want these URLs shared over chat-rooms (which provide only
recently-posted URLs) or web forums (which may archive many URLs). They
are already comfortable using rapidly expiring authentication tokens to achieve
this goal in pre-manifest systems. The technique ports cleanly to protect the
manifest itself. We will discuss how to extend this technique to the contents of a
manifest in Section 6.

Other content providers may also act adversarially. For example, one content
provider might be happy to show its own ads and receive revenue for them, then
direct users to pull a stream from a victim content provider. It also might do
this by linking directly to a pre-manifest stream, by linking to a manifest, or by
providing its own manifest linking to the stream components.

1 Not to be confused with the laudable practice of removing <blink> tags from the
Web.

6 Brian Sniffen

All of these security goals are instances of the problem of distributed au-
thentication and session management developed by Saltzer and Schroeder, and
separately by Abadi, Burrows, and Lampson.

3.3 Bad player

The interpreted player provides advertising, theming, branding, skinning, quality
control, and other forms of user interface management. The content providers
want to ensure that the media stream is presented in the most recent player—not
merely any authentic player, but the currently released player.

4 Protocols

We represent our protocols with usual Strand Space notation. We show con-
catenation of A and B as A ◦B. We show tagged concatenation as A ◦tagB. All
servers share a secret key K. The client and a web server share a TLS session
key KS .

We first examine a standard old-style streaming media protocol, shown in
Fig. 2. A client receives a URL from a web server over a confidential connection
(perhaps TLS). The client sends that URL to a media server, which responds
with many packets. Each packet is a small amount of stream content. The URL
passed around has several security-relevant objects embedded within it: release
of the URL by the client shows a grant of permission from the web server to
receive a stream identified by base-URL within 5 minutes of 26-Jul-09. The last
element of the URL is an embedded authentication token. It shows that some
server knowing K granted some client this permission. Only adversaries capable
of manipulating the tag URL can project values from this message or construct
messages of this form.

Web Server Client Media Server

Client with KS may
watch base-URL now.

{|URL|}KS

Web server
says it’s OK!

URL

Stream at offset 0

Stream at offset 1

Stream at offset 2

...

URL =base-URL ◦
URL

date=2009 07 26 2000 ◦
URL

timeout=5 ◦
URL

{|base-URL ◦
in-hash

date=2009 07 26 2000 ◦
in-hash

timeout=5|}K

Fig. 2. Simple streaming protocol

We now turn to a manifest-based protocol in Fig. 3. The web server makes the
same initial trust decision before releasing a URL to the client. The client then
requests that URL’s resource from the media server. The media server responds

Practically engageable adversaries for streaming media 7

with a manifest: a list of URLs. The client then requests those in some order.
It may pre-fetch some before watching. It may skip some in response to user
commands or network congestion.

Web Server Client Media Server

Client with KS may
watch base-URL now.

{|URLManifest|}KS

Web server
says it’s OK!

URLManifest

©
Man

2

i=0
URLi

URL0

Stream at offset 0

URL1

Stream at offset 1

URL2

Stream at offset 2

...

URLManifest =base-URL ◦
URL

date=2009 07 26 2000 ◦
URL

timeout=5 ◦
URL

{|base-URL ◦
in-hash

date=2009 07 26 2000 ◦
in-hash

timeout=5|}K

URLi =base-URL ◦
URL

offset=i ◦
URL

date=2009 07 26 2000 ◦
URL

timeout=5 ◦
URL

{|base-URL ◦
in-hash

offset=i ◦
in-hash

date=2009 07 26 2000 ◦
in-hash

timeout=5|}K

Fig. 3. Manifest-based streaming protocol

What sort of token should we embed in the chunk URLs? The diagram shows
a fresh token for each chunk, which will run into problems with timeouts during
long streams:

{|base-URL ◦
in-hash

offset=i ◦
in-hash

date=26-Jul-09 ◦
in-hash

timeout=5|}K

We might use the same token as the manifest URL:

{|base-URL ◦
in-hash

date=26-Jul-09 ◦
in-hash

timeout=5|}K

Again, this will have problems with long streams. By using cookie-based
tokens instead, we might consider chaining tokens from one request to the next,
weaving access control decisions through the protocol. We might even consider
using no token at all. Depending on how we model the unreliable datagrams of
pre-manifest protocols and the reliable channels of TCP, we might draw several
different conclusions about the consequences of these different tokens in the
presence of various adversaries.

Because manifests of live streams have messages of unbounded length, we do
not attempt to address them in the strand spaces formalism. We hope that the
uniform message structure will allow a manual proof.

8 Brian Sniffen

5 Adversaries

Classical strand spaces define the following adversary actions, each shown as a
short sequence of actions, where −a indicates receiving a value called a and +b
indicates sending that value:

Fresh texts Mt : 〈+t〉 where t ∈ text
Concatenation Cg,h : 〈−g,−h,+g ◦ h〉
Encryption Eh,K : 〈−K,−h,+{|h|}K〉
Fresh keys KK : 〈+K〉
Selection Sg,h : 〈−g ◦ h,+g,+h〉
Decryption Dh,K : 〈−K−1,−{|h|}K ,+h〉.

Our adversary does have Cg,h and Sg,h for assembling and disassembling
untagged concatenations, but also has the ability to manipulate some tagged
concatenations TA:

Cg,h,t : 〈−g,−h,+g ◦
t
h where t ∈ TA〉

Sg,h,t : 〈−g ◦
t
h,+g,+h where t ∈ TA〉

We can now define a tagged strand space ΣTA
as a strand space Σ annotated

with a set of tags TA that can be manipulated by the adversary.
We can now write down the adversaries to the security goals mention in

Section 3. The simplest copy-and-paste adversary cannot manipulate any tagged
concatenations: TA = {}. He can only replay entire messages. This also well models
the accidental adversary, such as a mis-configured HTTP proxy. Adversaries
who can manipulate URLs but do not understand the manifest format have
TA = {URL}. Adversaries who can make manifest files but cannot manipulate
URLs seem unrealistic, but would have TA = {Man}. Adversaries similar to
the competing content providers of Section 3.2 are quite flexible. They have
TA = {Man,URL}. Of course, with bank accounts and some need to build a
brand, these flexible adversaries may be more vulnerable to social controls.

6 Future Work

We can now analyze these protocols, including the several token variants men-
tioned in Section 4, in light of the various adversaries from Section 5. We expect
to find a set of token features necessary to protect against TA = {Man,URL}
adversaries given reasonable assumptions about the TCP channel between client
and media server and stateful servers. With stateless servers, we have little hope
to protect against TA ⊃ {Man} adversaries—even regular clients will connect to
several different servers during a stream. As they rewind and fast-forward, their
behavior will be indistinguishable from adversary behavior to the server.

We can also explore the problem of Interpreter-verified Players. Recall these
definitions from Section 2. Several streaming protocol vendors hope to (in our

Practically engageable adversaries for streaming media 9

terms) prevent a tag-limited adversary from using secrets embedded in a player
other than in accordance with the protocol. These adversaries cannot manipulate
the tag binding the secret to the Player.

We also see work to justify the model of the adversary as tag-limited, and to
refine an appropriate model of TCP, UDP, and IP for Strand Spaces.

7 Acknowledgments

My thanks to Michael Stone, Katherine Sniffen, and Andy Ellis for helpful
comments on drafts of this work.

References

1. comScore: YouTube surpasses 100 million U.S. viewers for the first time (3 2009)
2. Dolev, D., Yao, A.C.: On the security of public-key protocols. In: IEEE Transactions

on Information Theory. Volume 2. (1983) 198–208
3. Thayer, F., Herzog, J.C., Guttman, J.D.: Strand spaces: Proving security protocols

correct. Journal of Computer Security 7(1) (1999)
4. Guttman, J.D., Thayer, F.J., Carlson, J.A., Herzog, J.C., Ramsdell, J.D., Sniffen,

B.T.: Trust management in strand spaces: A rely-guarantee method. In: In Proc. of
the European Symposium on Programming (ESOP 2004), LNCS, Springer-Verlag
(2004) 325–339

5. Boyd, C.: Hidden assumptions in cryptographic protocols. IEE Proceedings Com-
puters and Digital Techniques 137(6) (November 1990) 433–436

6. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee,
T.: Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard) (June
1999) Updated by RFC 2817.

7. Zambelli, A.: IIS smooth streaming overview (3 2009)

