
Guided Policy Generation for Application Authors

Brian T. Sniffen David R. Harris
The MITRE Corporation∗

John D. Ramsdell

Abstract
Polgen is a tool for human-guided semi-automated SE
Linux security policy generation. Polgen processes
traces of the dynamic behavior of a target program. In
that behavior, it observes instances of information flow
patterns such as Pipeline, Interpreter, and Proxy. Based
on the patterns it detects, Polgen creates new SE Linux
types and generates policy rules. Because the dynamic
behavior is insufficient to determine security policy, Pol-
gen presents a wizard-style interface for human interac-
tion. We call the interaction “guided automatic policy
generation.”

We designed Polgen primarily for security administra-
tors who confront unfamiliar programs and are obliged
to integrate them into existing policy. This paper high-
lights changes made to Polgen to adapt it to the needs of
application authors, people that are less likely to be well
versed in SE Linux policy than are security administra-
tors. Key changes include an architecture specification
language and a refinement of the wizard-style interface
for application authors. When complete, this tool will
expand the community of policy authors, and further ac-
celerate the adoption of SE Linux.

1 Introduction

Security-Enhanced Linux adds mandatory access con-
trol to an open source operating system. Systems calls
that fail to conform to a policy are aborted. Access con-
trol decisions are based on labeling system objects with
types. To achieve realistic security goals, typical policies
specify many types.

Because of the fine-grained use of types, it is difficult
to extend a policy to support the security goals for a new
application. Most extensions are written by SE Linux ex-
perts, with detailed knowledge of the existing policy in-
frastructure. Such extensions are needed to support new

∗This work funded by NSA project 0705N6BZ-LS

installations and new applications. Currently, the number
of extensions is limited by the number of experts.

To support new installations, the Polgen guided policy
generation tool was developed. It was initially targeted
at security administrators, to aid them as they added new
applications into their computing environment. It partic-
ularly focused on generating policies that allow the least
set of privileges for items in an application, and assumed
that the security administrator does not always have ac-
cess to source code. In this mode of operation, Pol-
gen uses dynamically collected information about system
calls made by a program. From this information Polgen
infers an information-flow graph. It then suggests policy
modeled on patterns detected in that graph.

With so much of its original functionality focused on
learning what a program does, we did not initially con-
sider the utility-to-effort trade off for supporting policy
generation by the actual authors of programs. However,
Polgen contains an intermediate representation and con-
ducts analysis on that representation in a way that is en-
abling us to capture program knowledge without requir-
ing developers to deal with the syntax, and to some de-
gree the semantics, of Type Enforcement (TE) policy. In
addition, as we have progressed, we have constructed an
interactive guided automation approach that we and oth-
ers can extend to make policy generation available be-
yond the immediate SE Linux community.

Our current focus is to turn these powerful tools—
pattern detection, information flow modeling, and guided
automation—to better serve program authors. These au-
thors may be assumed to have detailed knowledge of
the operation of their programs, but only minimal un-
derstanding of SE Linux. Though they may be famil-
iar with general security principles, they may have little
knowledge of the specifics of SE Linux .te files. They
probably can’t tell user_t from unconfined_t or
remember whether a file or a process usually gets the
exec_t suffix. Our working hypothesis is that a com-
bination of pattern modeling with guided automation is

SBORG
Text Box
Approved for Public Release; Distribution UnlimitedCase #06-0046



perfect for encapsulating the knowledge of SE Linux that
a program author needs to make a good first-cut policy.

Policy so generated may not be complete for all sit-
uations and it will not support the creation of elaborate
modules with toggles to switch between vendor-specific
and reference policies; however, our goal is to make it
practical for program authors to produce policy modules
no worse than they might now accomplish after substan-
tial training and with significant attention to detail.

Section 2 describes the current Polgen system. In Sec-
tion 3 we describe related work. Section 4 describes our
current work including speculation on other forms of in-
put we are considering for seeding the policy generation
process.

2 Polgen

Polgen [4] is MITRE’s tool for human-guided automated
policy generation. It processes information flow data
for a target program. By observing patterns [7] such as
Pipeline, Interpreter, or Proxy in those flows, it generates
policy appropriate to such patterns. Because the resul-
tant policy makes a number of guesses to fill in absent
information, Polgen presents a wizard-style interface for
human interaction. We call this “guided automatic policy
generation.” The process is automatic, but admits human
guidance and tuning.

2.1 Information flow capture

We build the information flow graph not only from dy-
namic straces, but also from author generated mod-
els. These approaches generate complementary infor-
mation. Currently, a user selects one or the other form.
While some information merging is easily accomplished,
inconsistencies and missing data can make merging dif-
ficult. We discuss this issue and our plans in the upcom-
ing future work section. The next two sections cover our
dynamic analysis and model-driven approaches, respec-
tively.

2.1.1 strace and the Tracker

Polgen uses strace to identify dynamic behavior. To
collect its traces of program behavior, the Polgen suite
begins with a modified strace. Our patch to strace
displays the security context of the executing process and
of all resources accessed. It is a simple matter to exe-
cute a program under strace and exercise all desired
behaviors. Unfortunately, full exercise of reasonable ex-
ample programs (e.g., the Mozilla suite) produce enor-
mous strace logs, often exceeding the standard file
size limit.

jabberd = {
reads_types {shlib, lib,

proc, net_conf}
listens_at {5222, 5347}
connect_at {53}
execs_types {bin} }

component router {
parent jabberd
reads_types {shlib, local_config}
writes_types {local_log}
socket_write {resolver, c2s}
socket_read {resolver, c2s} }

component resolver {
parent jabberd
reads_types {shlib, local_config}
writes_types {local_log}
socket_write {router}
socket_read {router} }

component c2s {
parent jabberd
reads_types {shlib, local_config}
writes_types {local_log}
socket_write {router}
socket_read {router} }

Figure 1: Polgen Specification Language (PSL)

To pare the strace output down to a manageable
size, we have written a program called the file-descriptor
tracker (executable tracker). This consumes strace
input through a pipe, and produces a succinct description
of which security contexts are opened, read from, written
to, or executed. The tracker is useful in its own right
for producing type-focused descriptions of program ac-
tivity. Recent work has reduced the tracker’s depen-
dence on strace in favor of integration with the kernel
audit system.

2.1.2 Modeling

Figure 1 shows an abridged description of Jabberd [14]
as expressed in Polgen’s specification language—PSL.
PSL’s heritage is the work on software architecture de-
scription languages [11]. It emphasizes description of
components and connectors. Each component is de-
scribed with the connectors it makes to the outside envi-
ronment. Connectors include reads-from, writes-to, ex-
ecs, and sockets. If the author knows the SE Linux type
of an external component, he can enter that information
directly. If not, he can simply enter a directory name and

2



Polgen will try to match it to the most likely type. In
the figure, we see the description of four components—
jabberd itself, and three of its sub-components. The
router component has jabberd as a parent. It reads from
the shlib directory and also a configuration file associated
with jabberd. It writes to a jabberd log file component.

Descriptions in this language are a source for generat-
ing policy. We compile these descriptions into the same
graph formalism that we use for dynamic traces. We also
plan for eventual integration with other formats such as
what is produced in Tresys work (see Section 3.1.2). In
this way we can take advantage of the consistency rules
used in an integrated development environment.

2.2 Pattern recovery

Having produced a list of interactions between secu-
rity contexts using one of the two methods mentioned
above, the Polgen suite analyzes these to produce se-
mantically meaningful chunks, detecting and repairing
violations of good security practice. A pair of tools are
used: typegen marks elements of the new program,
and spar recognizes patterns involving the interaction
of those marked types.
spar operates in two phases. It first constructs an

information-flow graph. It then walks this graph to
search for patterns in the interactions of system calls.
Patterns are small collections of typical interactions.
Identification of instances of these patterns is useful in
three ways.

First, a pattern can be used to identify meaningful sub-
programs. For example, spar will identify CGI scripts
running in conjunction with a web-server. The value of
this recognition is that the policy author can safely pro-
vide access to types of resources required by the sub-
program without unnecessarily extending such privileges
to the larger program and its other processes.

Second, a pattern may suggest the employment of
special types to ensure that pattern constraints are en-
forced. For example, a pipe-and-filter pattern contains a
start process, one or more intermediate processes, and an
end process. Resources (e.g., files, pipes, sockets) that
are used for information flow between processes must
be restricted to modification only by the preceding pro-
cess in the chain. This can be enforced by declaring
these resources to be of a specific type, hence preventing
arbitrary external processes from modifying their con-
tents. spar will automatically change any of these re-
sources that are from the new application (i.e., marked
by typegen) to a new type.

Third, a pattern may entail type transition operations
that are in conflict with other transitions. By capturing all
patterns such as execution of a process, we can examine
the type transitions for conflicts. spar has a strategy for

resolving some of these conflicts. For example suppose
we have a situation where our model suggests multiple
processes of type A each read from a file of type B and
execute a set of different processes of distinct types. But
since we can only have one transition out of the (A,B)
pair, spar will attempt to resolve the conflict. It offers
various actions including merging a collection of types if
they are all marked by typegen. More details will be
provided later on this strategy.

2.3 Generation
2.3.1 Basic Approach

After completing its automated analysis of tracked files,
spar provides a policy author with an opportunity to
fine tune types prior to automated policy generation.
spar allows users to modify type assignment strategies
in several ways. Users can declare that spar should
minimize the number of new types created or that spar
should never change a type of any pre-existing types.
If these options are not selected users will be able to
manually decline creation of each new type as it is pro-
posed. Finally, the user can specify a distinguished
generic type, to support distribution specific differences
between unconfined_t, bin_t, user_t, et al.

As another support for type assignment, spar allows
users to set up ad hoc groups of processes. The notion
is that you may want to establish new types for all files
read or modified by processes in a group.
spar then allows users to confirm its type assign-

ments. The user is able to select a group and pat-
tern designation for a type or return to an original type.
The default is to apply pattern and group constraints
for typegen-created types and to use an original type
for others. If you override one of these original types,
spar will ask for confirmation. spar cleans up the re-
maining new-application types, and replaces them with a
program-specific name. The final step is to set the direc-
tory level for all files with a new type. This information
shows up in the .fc file and conforms to the regular ex-
pression protocols for .fc files.

Once the policy author has finished making changes,
Polgen generates .te and .fc files. These files con-
tain familiar “allow” and “type” statements. In addition,
Polgen generates pattern instance macros. These macros
are parameterized by the types of the processes, files and
other resources that participate in pattern instances.

2.3.2 Reference Policy

Automatically generating reference policy requires tools
to distinguish between resources of the program and ex-
ternal resources. For example, in Figure 1, local-config
and local-log are key words that indicate a process will

3



respectively read from or write to a file of a new, pri-
vate type. Such actions are “allowed” as in the basic ap-
proach. Other resource types such as shlib_t are ex-
ternal. Polgen calls out any actions concerning external
resources in a separate interface file and display screen.

2.3.3 New types

Among the challenge areas for (semi)automated policy
generation is the creation of new types.

Expanding existing types The primary challenge for
any policy generation tool is the creation of new
types. For example, the most pernicious failure of
audit2allow is not that it permits everything—this
might be controlled through careful review. It is that it
never creates new types. We now present our approach
to creating new types on a system with existing policy.

In order to manage the inheritance issue while creat-
ing new types and new relations between them, we have
to show the user how each action changes the defini-
tion of types already on the system. We don’t worry
as much when he changes types local to this new mod-
ule. But when he says that his new prog_t can write to
shadow_t, this is an important change to the definition
of shadow_t.

The basic operation of type creation is the split. The
basic system-wide types such as bin_t and user_t
already exist. When adding some new program, we can
treat its executables as almost like bin_t and any users
necessary to run it as almost like user_t. That is, we
express the differences between the base types and these
new types, then close the new types. In this way, we
avoid the danger of inheritance in the actual .te files.

Minimizing type count One way to solve the prob-
lems above would be by providing new types for every
file on a system, and for every process which might arise
from the product of pre-existing processes and files. This
way madness lies. Our goal is not only good security. We
also have to produce a system that runs. We therefore de-
vote some effort to reducing the number of types on the
system. Types that are similar are presented to the user,
with the suggestion that he might like to merge them. A
merge operation is exactly the reverse of a split.

Grouping like types Humans generating policy know
when to assign types to individual files, and when to as-
sign types to directories and only explicitly label excep-
tional files. Such reasons are erased by the time an au-
tomated tool has the opportunity to act. It’s hoped that
package data will show us which files from a new appli-
cation are being added to existing directories, and which
are placed in entirely new directories. From such data,

we can infer or guess when a change in many files in a
directory should cause us to instead change the type of
the directory.

3 Related Work

3.1 Other generation tools

We have developed Polgen in the footsteps of other gen-
eration tools—including the infamous audit2allow.
We have also developed contemporaneously with several
other projects providing advanced policy development
support:

3.1.1 Virgil

Virgil [10] is a GUI tool for specifying simple SE Linux
policies. It focuses attention on a single domain for easy
use, but sacrifices the ability to describe interaction be-
tween domains. It has an easy interface for selecting ca-
pabilities without needing to exercise them, and a novel
expression of “Subdomains” for scoped type transitions.

Unfortunately, Virgil must be used as a live GUI on a
machine running the real policy, in parallel with the ap-
plication for which policy is being generated, and with
extensive privileges! It gains some critical information,
such as the type for network sockets, from dynamic ob-
servation of the program.

Polgen provides a higher abstraction level for describ-
ing policies. It doesn’t allow direct access to the Linux
capabilities system, but also doesn’t require knowledge
of that system. Virgil and Polgen target different audi-
ences: Virgil is for someone experienced with Linux and
SE Linux, looking to quickly construct a simple policy.
Polgen is targeted at those with less Linux familiarity,
and provides support for more complicated policies, such
as those with multiple domains.

3.1.2 Tresys IDE

Tresys has developed an Eclipse Plugin [3, 5]. As of the
beginning of 2006, it has not been publicly distributed.
It provides symbol completion, syntax highlighting, and
some assistance for tracking the scopes of names. Un-
published discussions have indicated that it will support
an annotated syntax for describing policies. This will en-
able interesting tools for merging policies or measuring
the differences between them.

Such an export tool from the Tresys IDE would allow
integration with Polgen. It might even be possible to in-
tegrate Polgen’s pattern-detection and policy-suggestion
components into the IDE for live suggestion of policy
additions.

4



3.2 SELinux Policy Editor

Yuichi Nakamura, of Hitachi and the George Washing-
ton University, has developed a vastly simplified policy
infrastructure [12]. By removing most of the file-type
abstraction layer, he removes much of the difficulty and
much of the expressive power of Type Enforcement. In
particular, this system revives the inheritance problem
of old hierarchical MAC systems that Type Enforcement
was created to address.

This work addresses a distinct audience from Virgil
and from Polgen: those with some experience in Linux,
little to none in SE Linux, and with some familiarity with
their application domain.

3.3 The macro language

The M4 macro language [15] has severe shortcomings
as the primary abstraction of relations between types.
It is excellent for aggregating and naming collections
of .te rules, but this is all it can do. We would
like to be able to map the patterns described above to
macros. For example, when a pattern “Executable” is
discovered, relating the type of some files f_t to the
type of the processes that are run from them p_t, we
would like to write a single line of .te file output
pattern_executable(f_t,p_t). What can we
write in the definition of such a macro? It’s easy to ex-
pand it to a call to the domain_auto_trans macro,
but this is insufficient.

Other policy components may later wish to refer to the
file from which p_t originated, or to the process which
might erupt from f_t. Because these macros do not es-
tablish persistent data structures representing relations,
and do not return values, we cannot easily write policy
which is parameterized in this way.

Some policy manipulation tools [2] have performed
limited versions of such relational maps. For ex-
ample, if all policy authors obey the restriction that
can_exec(user_t,foo_exec_t,foo_t) for all
groups of related types foo, one can apply the map by
adding or removing the string exec_. This only works
in very strict circumstances. Most importantly, it can-
not be extended to handle multiple orthogonal relations
in the system. If some type of group foo participates
in an unparameterized executable relation and a pipeline
relation with groups bar and baz, should we name
it foo_exec_pipe_bar_pipe_baz_t? We would
very quickly create a world of horribly verbose pseudo-
Hungarian types.

Still further insufficiencies become apparent once we
try to maintain a policy generated largely from macros.
For example, we cannot close a type. We cannot make
use of relations established by non-macro contents of

.te files, or even by other macros. For all these reasons,
we have to maintain a higher-level abstraction of the in-
tended policy, then compile that to the macro language or
to direct .te rules. The pattern language provides such
a higher-level abstraction. For reasons of maintainabil-
ity, we choose to leave macros evident in the output .te
files wherever possible.

3.4 System modeling and specification
Gathering high level information about a software sys-
tem has been a long term goal of the software engineer-
ing community. The work most closely related to our
notion of modeling systems can be found in the literature
on software architectures [8]. While we borrow a basic
ontology from this literature, the goal is different. The ar-
chitecture work focuses on analysis of abstract artifacts
prior to system implementation, while we use similar ab-
stracts to start the policy generation process.

3.5 Pattern recovery
There is a rich archive of literature on software design
patterns [7] that we have draw from. Familiar examples
of patterns include Factory, Visitor, Pipeline, Mediator,
and Chain of Responsibility. Most of these entail struc-
turing to achieve a balance between strong typing (in the
software engineering sense) and run-time flexibility.

The notion of design pattern is intentionally
informal—the software community defines a pat-
tern whenever variants are used over and over again to
solve some problem. In some cases, two patterns will be
structurally and behaviorally similar—the difference is
in programmer intent. Thus, pattern recognition cannot
be exact. However, it is possible to develop recognition
assets that within reasonable error bounds will find
known patterns in extant applications. Most of the
work in software design pattern recovery has used static
analysis techniques. Our own work [1] in developing a
prototype tool called Osprey falls into this category.

Recently, there has been progress in combining static
and dynamic analysis approaches for this task. Typi-
cally a static analysis will yield an abstract syntax tree.
Dynamic analysis based on some form of instrumenta-
tion or debug support is then used to refine the analysis
[9, 6, 13]. In contrast to that work, we are interested in
the interaction among resources (processes, files, sock-
ets, etc.), not classes and methods of an object-oriented
program itself.

4 Future Work

There are several other sources of input to seed the Pol-
gen process. In particular, if we have access to the pro-

5



gram’s developers, we have excellent sources of infor-
mation: direct interaction and existing data. We want ex-
periences to get as much as possible out of existing data
sources. This minimizes the burden on the policy author.

4.1 Guided interview
We want to keep the interview as short as possible while
providing the most useful opportunities for the applica-
tion author to describe the behavior of his program. The
best compromise we can find is composed of these ele-
ments:

• Separation of questions which need answers from
those which have reasonable defaults.

• Capture of interaction sequences for later playback.
This prevents needless re-entry of data with pro-
gram updates.

• Adaptation of the questions to an application au-
thor’s mindset, rather than an SE Linux expert’s
mindset.

In some cases, we expect to use the language described
above to provide a middle ground between an interview
and direct .te files.

4.2 Light-weight static analysis
Analysis of distribution packages only produces infor-
mation about the highest level of program components,
and only about static components—files, not processes.
It does not produce information about relations between
processes from the new application and files already on
the system.

Polgen now obtains such information from analysis of
dynamic traces of the new program; however, dynamic
analysis only works when an analyst exercises the rele-
vant pieces of the code. Dynamic analysis can also con-
sume a great deal of resources producing information al-
ready available to the program author.

The pattern recognizer used in spar descends from
previous MITRE work on Osprey, a static-analysis
based reverse engineering tool that recognizes software
design patterns in C, C++, and Java code. Since the in-
ternal structures of Osprey and spar are quite similar
(recognizers that match flow graphs to predefined pat-
terns and constraints), we anticipate a smooth integration
of these two approaches. When source code is available,
Osprey can identify resources used by the program with-
out the problems of dynamic analysis—and without re-
quiring the author to re-specify these details.

To date, we have conducted static analysis on a few
programs in order to confirm our dynamic analysis find-
ings.

4.3 Integration

We have not yet dealt with the interplay between mod-
els, static analysis, and dynamic analysis. Indeed, the
source code for some applications may not be available
for use in static analysis. Where more than one mode is
available we want to support policy authoring from mul-
tiple sources. We intend to look more closely at the work
that generates an abstract syntax tree and then annotates
this tree with information generated from abstract mod-
els and/or dynamic traces.

5 Conclusion

In the paper we have described Polgen, a prototype tool
that program authors can use to generate SE Linux pol-
icy. These authors can provide a distinctly rich source of
knowledge about their applications. Borrowing from re-
search into software architecture and pattern descriptions
allows us to capture that knowledge in PSL. The Polgen
tool digests descriptions in PSL, together with optional
dynamic traces, into information flow graphs. Our prior
work on semi-automated generation of policy from such
information flow graphs applies here. We translate the
author’s knowledge into information flow graphs, and the
graphs into SE Linux policy.

We also explained our current plans to include guided
interviews and light-weight static analysis to comple-
ment other forms of application information capture.

By augmenting the information flows from the pattern
language with that from dynamic traces, we allow pro-
gram authors to produce policy modules with much less
effort and much higher quality.

References

[1] A. Asencio, S. Cardman, D. Harris, and E. Lader-
man. Relating expectations to automatically recov-
ered design patterns. In WCRE ’02: Proceedings
of the Ninth Working Conference on Reverse En-
gineering (WCRE’02), page 87, Washington, DC,
USA, 2002. IEEE Computer Society.

[2] Tresys Corp. Setools policy tools for selinux,
2002–2005. URL http://tresys.com/
selinux/selinux policy tools.shtml.

[3] Tresys Corp. Selinux development and integration
ide, 2005. URL http://www.tresys.com/
selinux/sedev.shtml.

[4] The MITRE Corporation. Polgen: Guided auto-
mated policy development. URL http://www.
mitre.org/tech/selinux/.

6

http://tresys.com/selinux/selinux_policy_tools.shtml
http://tresys.com/selinux/selinux_policy_tools.shtml
http://www.tresys.com/selinux/sedev.shtml
http://www.tresys.com/selinux/sedev.shtml
http://www.mitre.org/tech/selinux/
http://www.mitre.org/tech/selinux/


[5] Eclipse.Org. The eclipse platform. URL http:
//www.eclipse.org/.

[6] Thomas Eisenbarth, Rainer Koschke, and Daniel
Simon. Locating features in source code. IEEE
Trans. Softw. Eng., 29(3):210–224, 2003.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design patterns: elements of
reusable object-oriented software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
1995.

[8] David Garlan, Robert T. Monroe, and David Wile.
Acme: Architectural description of component-
based systems. In Gary T. Leavens and Mu-
rali Sitaraman, editors, Foundations of Component-
Based Systems, chapter 3, pages 47–67. Cambridge
University Press, NY, 2000.

[9] Dirk Heuzeroth, Thomas Holl, Gustav Högström,
and Welf Löwe. Automatic design pattern detec-
tion. In IWPC ’03: Proceedings of the 11th IEEE
International Workshop on Program Comprehen-
sion, page 94, Washington, DC, USA, 2003. IEEE
Computer Society.

[10] Daniel H. Jones. Virgil: Selinux policy genera-
tor, 2005. URL http://sepolicy-virgil.
sourceforge.net/.

[11] Nenad Medvidovic and Richard N. Taylor. A
framework for classifying and comparing archi-
tecture description languages. In M. Jaza-
yeri and H. Schauer, editors, Proceedings of
the Sixth European Software Engineering Con-
ference (ESEC/FSE 97), pages 60–76. Springer–
Verlag, 1997.

[12] Yuichi Nakamura. Simplifying policy man-
agement with selinux policy editor. In
SELinux Symposium 2005, Baltimore, MD,
USA, 2005. SELinux Symposium, LLC.
URL http://www.selinux-symposium.
org/2005/presentations/session4/
4-2-nakamura.pdf.

[13] Jörg Niere, Wilhelm Schäfer, Jörg P. Wadsack,
Lothar Wendehals, and Jim Welsh. Towards
pattern-based design recovery. In ICSE ’02: Pro-
ceedings of the 24th International Conference on
Software Engineering, pages 338–348, New York,
NY, USA, 2002. ACM Press.

[14] Rob Norris, Justin Kirby, Stephen Marquad, and
Jabberd Project. Jabberd 2 server. URL http:
//jabberd.jabberstudio.org/2/.

[15] Gary V. Vaughan and The GNU Project. Gnu
m4 macro processor. URL http://www.gnu.
org/software/m4/.

7

http://www.eclipse.org/
http://www.eclipse.org/
http://sepolicy-virgil.sourceforge.net/
http://sepolicy-virgil.sourceforge.net/
http://www.selinux-symposium.org/2005/presentations/session4/4-2-nakamura.pdf
http://www.selinux-symposium.org/2005/presentations/session4/4-2-nakamura.pdf
http://www.selinux-symposium.org/2005/presentations/session4/4-2-nakamura.pdf
http://jabberd.jabberstudio.org/2/
http://jabberd.jabberstudio.org/2/
http://www.gnu.org/software/m4/
http://www.gnu.org/software/m4/

	Introduction
	Polgen
	Information flow capture
	strace and the Tracker
	Modeling

	Pattern recovery
	Generation
	Basic Approach
	Reference Policy
	New types


	Related Work
	Other generation tools
	Virgil
	Tresys IDE

	SELinux Policy Editor
	The macro language
	System modeling and specification
	Pattern recovery

	Future Work
	Guided interview
	Light-weight static analysis
	Integration

	Conclusion



